Éléments de géométrie à trois dimensions (Livre numérique Google)

Couverture
F. Didot, 1817 - 274 pages
0 Avis
  

Avis des internautes - Rédiger un commentaire

Aucun commentaire n'a été trouvé aux emplacements habituels.

Expressions et termes fréquents

Fréquemment cités

Page 13 - Afin d'éviter l'emploi des proportions, nous l'appuierons sur le théorème suivant, qui a lui-même assez d'importance et de simplicité pour prendre place dans les éléments de géométrie. Lorsque trois sphères se pénètrent mutuellement ; prises deux à deux, elles ont pour intersection un cercle dont le plan est perpendiculaire à la ligne droite qui joint leurs centres, et, par conséquent, perpendiculaire aussi au plan des centres des trois sphères. De plus, les trois plans, ainsi définis,...
Page 60 - ... sphère ne peut être recouverte avec des polygones égaux et réguliers que de cinq manières : savoir, de trois manières avec des triangles, d'une manière avec des polygones de quatre côtés, et d'une manière avec des polygones de cinq côtés. Si l'on considère les polygones infiniment petits, on a encore trois manières de recouvrir la sphère : savoir, avec des triangles, des carrés et des hexagones; or, si l'on suppose le rayon de la sphère infini, une partie finie de la surface...
Page 251 - Mémoire sur la relation qui existe entre les distances respectives de cinq points quelconques pris dans l'espace, suivi d'un essai sur la Théorie des transversales, 4 to. 1806 . . . . . 5» 2939 de la Corrélation des figures de géométrie, 8 vo. 1801 . ii* 2940 Géométrie de Position, 4to. 1803 . . .£11» 2941 • Réflexions sur la métaphysique du Calcul infinitésimal, 8vo.
Page 56 - ... droits que le polygone a de côtés, moins quatre angles droits. On suppose les côtés du polygone formés par des arcs de grands cercles, qui sur la sphère sont toujours les plus courtes lignes entre leurs points extrêmes. Ce théorème donne une solution fort simple du...
Page 4 - ... nomment ordonnées. Si l'on considère comme positives les coordonnées prises d'un certain côté de leur origine, elles seront négatives prises du côté opposé. Si l'on n'a qu'une équation entre les trois coordonnées, la position du point est indéterminée, et le lieu de tous les points qui y satisfont est une surface dont cette équation exprime la nature. Si l'on a deux équations entre...
Page 5 - ... c'est par ce principe qu'ils ont déterminé les tangentes dans le petit nombre des courbes qu'ils ont considérées. Mais depuis que, par l'application de l'Algèbre à la Géométrie...
Page 139 - Ajoutant ensemble ces deux équations , on a : 1,ii'i , . 7+ 7 = 7+7i; (a) c'est-à-dire que la somme des rayons de courbure de deux sections normales quelconques en un point déterminé d'une surface , est égale à la somme des rayons de courbure principaux de la surface au même point. Lorsque deux cylindres dont les arêtes sont perpendiculaires entre elles se pénètrent, il peut arriver qu'ils aient même plan tangent en un point de leur ligne d'intersection. Si l'on nomme r et...
Page 157 - Pour passer d'un système de coordonnées rectangulaires à un système de coordonnées obliques, l'origine restant la même, on se servira des formules x = x' cos a. -+-y
Page 234 - ... dont le rayon est égal à la racine carrée de la somme des carrés des trois demi-axes ? (*) Ce théorème, dû à M. Monge, a été démontré par M. Poisson , I".
Page 89 - ... sont égaux en longueur à ceux du triangle sphérique ; ou en d'autres termes, le triangle sphérique très-peu courbe, dont les angles sont A) B, C, et les côtés opposés a, b, c, répond toujours à un triangle rectiligne équivalent en surface , et qui a les côtés de même longueur a , b , c , et dont les angles opposés...

Informations bibliographiques