Spherical Inversion on SLn

Couverture
Springer Science & Business Media, 21 juin 2001 - 426 pages
Harish-Chandra¿s general Plancherel inversion theorem admits a much shorter presentation for spherical functions. Previous expositions have dealt with a general, wide class of Lie groups. This has made access to the subject difficult for outsiders, who may wish to connect some aspects with several if not all other parts of mathematics. In this book, the essential features of Harish-Chandra theory are exhibited on SLn(R), but hundreds of pages of background are replaced by short direct verifications. The material is accessible to graduate students with no background in Lie groups and representation theory.
 

Avis des internautes - Rédiger un commentaire

Aucun commentaire n'a été trouvé aux emplacements habituels.

Table des matières

IV
1
V
5
VI
10
VII
17
VIII
25
IX
28
X
33
XI
36
XLVIII
248
XLIX
253
L
255
LI
256
LII
260
LIII
262
LIV
270
LV
277

XII
44
XIII
51
XIV
57
XV
59
XVI
66
XVII
75
XVIII
83
XIX
87
XX
91
XXI
98
XXII
105
XXIII
108
XXIV
114
XXV
131
XXVI
132
XXVII
138
XXVIII
141
XXIX
143
XXX
148
XXXI
155
XXXII
159
XXXIII
167
XXXIV
177
XXXV
178
XXXVI
181
XXXVII
187
XXXVIII
195
XXXIX
197
XL
204
XLI
209
XLII
214
XLIII
219
XLIV
233
XLV
237
XLVI
243
XLVII
246
LVI
280
LVII
284
LVIII
293
LIX
298
LX
301
LXI
304
LXII
309
LXIII
311
LXIV
320
LXV
321
LXVI
325
LXVII
326
LXVIII
332
LXIX
339
LXX
351
LXXI
355
LXXII
361
LXXIII
365
LXXIV
367
LXXV
373
LXXVI
374
LXXVII
377
LXXVIII
381
LXXIX
384
LXXX
385
LXXXI
387
LXXXII
388
LXXXIII
392
LXXXIV
396
LXXXV
398
LXXXVI
402
LXXXVII
406
LXXXVIII
411
LXXXIX
419
XC
423
Droits d'auteur

Autres éditions - Tout afficher

Expressions et termes fréquents

Informations bibliographiques