Nonlinear Estimation

Couverture
Springer New York, 17 août 1990 - 189 pages
Non-Linear Estimation is a handbook for the practical statistician or modeller interested in fitting and interpreting non-linear models with the aid of a computer. A major theme of the book is the use of 'stable parameter systems'; these provide rapid convergence of optimization algorithms, more reliable dispersion matrices and confidence regions for parameters, and easier comparison of rival models. The book provides insights into why some models are difficult to fit, how to combine fits over different data sets, how to improve data collection to reduce prediction variance, and how to program particular models to handle a full range of data sets. The book combines an algebraic, a geometric and a computational approach, and is illustrated with practical examples. A final chapter shows how this approach is implemented in the author's Maximum Likelihood Program, MLP.

À l'intérieur du livre

Avis des internautes - Rédiger un commentaire

Aucun commentaire n'a été trouvé aux emplacements habituels.

Table des matières

CHAPTER
12
CHAPTER 5
32
CHAPTER 3
44
Droits d'auteur

6 autres sections non affichées

Autres éditions - Tout afficher

Expressions et termes fréquents

Informations bibliographiques