Images de page
PDF
ePub
[ocr errors]

A A. The upper portion of the tubing is drawn down to the lower portion by the tightening screws B B, so as to compress the moss-packing when the weight is not sufficient for the purpose. A space C is left between the tubing and the side of the well, to admit of the passage of the stuffing-box flange, and also for running in concrete for the completion of the operation. The mosspacking rests upon the bottom flange D; but this flange is sometimes omitted. The joint is thus simply made by pressing out the moss-packing against the sides of the well; and this material, being easily compressible and not liable to decay under water, is found to make a very satisfactory and durable joint.

[graphic]

Fig. 188.

M. Dru states that the reaction tool has been successfully employed for borings up to as large as about 4 feet diameter, witness the case of the well at Butte-aux-Cailles of 47 inches diameter; but beyond that size he considers the shock requisite to liberate the larger and heavier tool would probably be so excessive, as to be injurious to the boring rods and the rest of the attachments; and he therefore designed the arrangement of the disengaging rod for liberating the tool in borings of large diameter, whereby all shock upon the boring rods was avoided and the tool was liberated with complete certainty.

In practice it is necessary, as with the common chisel, to turn the boring tool partly round between each stroke, so as to prevent it from falling every time in the same position at the bottom of the well; and this was effected in the well at Butteaux-Cailles by manual power at the top of the well, by means of a long hand-lever fixed to the boring rod by a clip bolted on, which was turned round by a couple of men through part of a revolution during the time that the tool was being lifted. The

turning was ordinarily done in the right-hand direction only, so as to avoid the risk of unscrewing any of the screwed couplings of the boring rods; and care was taken to give the boring rod half a turn when the tool was at the bottom, so as to tighten the screw-couplings, which otherwise might shake loose. In the event of a fracture, however, leaving a considerable length of boring rod in the hole, it was sometimes necessary to have the means of unscrewing the couplings of the portion left in the hole, so as to raise it in parts instead of all at once. In that case a locking clip was added at each screwed joint above, and secured by bolts, as shown at C in Fig. 180, at the time of putting the rods together for lowering them down the well to recover the broken portion; and by this means the ends of the rods were prevented from becoming unscrewed in the coupling sockets, when the rods were turned round backwards for unscrewing the joints in the broken length at the bottom of the bore-hole.

When running sands are met with, the plan adopted is to use the Chinese ball-scoop, or shell, Fig. 186, described for clearing the bottom of the bore-hole; and where there is too much sand for it to be got rid of in this way, a tube has to be sent down from the surface to shut off the sand. This, of course, necessitates diminishing the diameter of the hole in passing through the sand; but on reaching the solid rock below the running sand, an expanding tool is used for continuing the bore-hole below the tubing with the same diameter as above it, so as to allow the tubing to go down with the hole.

In the case of meeting with a surface of very hard rock at a considerable inclination to the bore-hole, M. Dru employs a tool, the cutters of which are fixed in a circle all round the edge, of the tool, instead of in a single diameter line; the length of the tool is also considerably increased in such cases, as compared with the tools used for ordinary work, so that it is guided for a length of as much as 20 feet. He uses this tool in all cases where from any cause the hole is found to be going crooked, and has even succeeded by this means in straightening a hole that had previously been bored crooked.

The cutting action of this tool is all round its edge; and therefore in meeting with an inclined hard surface, as there is nothing to cut on the lower side, the force of the blow is brought to bear on the upper side alone, until an entrance is effected into the hard rock in a true straight line with the upper part of the hole.

Although as regards diameter, depth, and flow of water in favourable localities, some extraordinary results have been obtained with this system of boring by rods worked by steam power, yet, as Dru himself observes, "in some instances his own experience of boring had been, that owing to the difficulties attending the operation, the occurrence of delays from accidents was the rule, while the regular working of the machinery was the exception." A further disadvantage to be noticed is that, owing to the time and labour involved in raising and lowering heavy rods in borings of 10 inches diameter and upwards, there is a strong inducement to keep the boring tool at work for a much longer period than is actually necessary for breaking up fresh material at each stroke. The fact is that after from 100 to 200 blows have been given, the boring tool merely falls into the accumulated débris and pounds this into dust, without again touching the surface of the solid rock. It may therefore be easily understood how much time is totally lost out of the periods of five to eight hours during which with the rod system the tool is allowed to continue working.

MATHER AND PLATT'S SYSTEM.

In the most recent method of boring adopted in England, the rope employed in the Chinese system has been reverted to, in place of the iron or wood rods used on the Continent. A flexible rope admits of being handled with greater facility than iron rods, but wants the advantage of rigidity: in the Chinese method it admitted of withdrawing the chisel or bucket very rapidly, but gave no certainty to the operation of the chisel at the bottom of the hole. The rods on the other hand enable a very effective blow to be given, with a definite turning or

[graphic][subsumed][subsumed][subsumed][subsumed][subsumed][ocr errors][merged small][merged small][merged small]

tures of this plan, which is shown in Figs. 189 to 195, are the mode of giving the percussive action to the boring tool, and the

[graphic][ocr errors][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][subsumed][merged small][merged small]

construction of the tool or boring-head, and of the shell-pump

« PrécédentContinuer »