Images de page
PDF
ePub

a copious supply may be confidently anticipated, and when found the water is of excellent quality.

Every permeable stratum may yield water, and its ability to do this, and the quantity it can yield, depend upon its position and extent. When underlaid by an impervious stratum, it constitutes a reservoir of water from which a supply may be drawn by means of a sinking or a bore-hole. If the permeable stratum be also overlaid by an impervious stratum, the water will be under pressure and will ascend the bore-hole to a height that will depend on the height of the points of infiltration above the bottom of the bore-hole. The quantity to be obtained in such a case as we have already pointed out, will depend upon the extent of surface possessed by the outcrop of the permeable stratum. In searching for water under such conditions a careful examination of the geological features of the district must be made. Frequently an extended view of the surface of the district, such as may be obtained from an eminence, and a consideration of the particular configuration of that surface, will be sufficient to enable the practical eye to discover the various routes which are followed by the subterranean water, and to predicate with some degree of certainty that at a given point water will be found in abundance, or that no water at all exists at that point. To do this, it is sufficient to note the dip and the surfaces of the strata which are exposed to the rains. When these strata are nearly horizontal, water can penetrate them only through their fissures or pores; when, on the contrary, they lie at right angles, they absorb the larger portion of the water that falls upon their outcrop. When such strata are intercepted by valleys, numerous springs will exist. But if, instead of being intercepted, the strata rise around a common point, they form a kind of irregular basin, in the centre of which the water will accumulate. In this case the surface springs will be less numerous than when the strata are broken. But it is possible to obtain water under pressure in the lower portions of the basin, if the point at which the trial is made is situate below the outcrop.

The primary rocks afford generally but little water. Having

been subjected to violent convulsions, they are thrown into every possible position and broken by numerous fissures; and as no permeable stratum is interposed, as in the more recent formations, no reservoir of water exists. In the unstratified rocks, the water circulates in all directions through the fissures that traverse them, and thus occupies no fixed level. It is also impossible to discover by a surface examination where the fissures may be struck by a boring. For purposes of water supply, therefore, these rocks are of little importance. It must be remarked here, however, that large quantities of water are frequently met with in the magnesian limestone and the lower red sand, which form the upper portion of the primary series.

Joseph Prestwich, jun., in his Geological Inquiry respecting the Water-bearing Strata round London,' gives the following valuable epitome of the geological conditions affecting the value of water-bearing deposits; and although the illustrations are confined to the Tertiary deposits, the same mode of inquiry will apply with but little modification to any other formation. The main points are

The extent of the superficial area occupied by the waterbearing deposit.

The lithological character and thickness of the water-bearing deposit, and the extent of its underground range.

The position of the outcrop of the deposit, whether in valleys or hills, and whether its outcrop is denuded, or covered with any description of drift.

The general elevation of the country occupied by this outcrop above the levels of the district in which it is proposed to sink wells.

The quantity of rain which falls in the district under consideration, and whether, in addition, it receives any portion of the drainage from adjoining tracts, when the strata are impermeable.

The disturbances which may affect the water-bearing strata, and break their continuous character, as by this the subterranean flow of water would be impeded or prevented.

EXTENT OF SUPERFICIAL AREA.

To proceed to the application of the questions in the particular instance of the lower tertiary strata. With regard to the first question, it is evident that a series of permeable strata encased between two impermeable formations can receive a supply of water at those points only where they crop out and are exposed on the surface of the land. The primary conditions affecting the result depend upon the fall of rain in the district where the outcrop takes place; the quantity of rain-water which any permeable strata can gather being in the same ratio as their respective areas. If the mean annual fall in any district amounts to 24 inches, then each square mile will receive a daily average of 950,947 gallons of rain-water. It is therefore a matter of essential importance to ascertain, with as much accuracy as possible, the extent of exposed surface of any water-bearing deposit, so as to determine the maximum quantity of rain-water it is capable of receiving.

The surface formed by the outcropping of any deposit in a country of hill and valley is necessarily extremely limited, and it would be difficult to measure in the ordinary way. Prestwich therefore used another method, which seems to give results sufficiently accurate for the purpose. It is a plan borrowed from geographers, that of cutting out from a map on paper of uniform thickness and on a large scale, say one inch to the mile, and weighing the superficial area of each deposit. Knowing the weight of a square of 100 miles cut out of the same paper, it is easy to estimate roughly the area in square miles of any other surface, whatever may be its figure.

MINERAL CHARACTER OF THE FORMATION.

The second question relates to the mineral character of the formation, and the effect it will have upon the quantity of water which it may hold or transmit.

If the strata consist of sand, water will pass through them

a

with facility, and they will also hold a considerable quantity between the interstices of their component grains; whereas a bed of pure clay will not allow of the passage of water. These are the two extremes of the case; the intermixture of these materials in the same bed will of course, according to their relative proportions, modify the transmission of water. Prestwich found by experiment that a silicious sand of ordinary character will hold on an average rather more than one-third of its bulk of water, or from two to two and a half gallons in one cubic foot. In strata so composed the water may be termed free, as it passes easily in all directions, and under the pressure of a column of water is comparatively but little impeded by capillary attraction. These are the conditions of a true permeable

a London clay. b Sands and clay. c Chalk.

Fig. 5.

1

mass,

stratum. Where the strata are more compact and solid, as in sandstone, limestone, and oolite, although all such rocks imbibe more or less water, yet the water so absorbed does not pass freely through the but is held in the pores of the rock by capillary attraction, and parted with very slowly; so that in such de2 posits water can be freely transmitted only in the planes of bedding and in fissures. If the water-bearing deposit is of uniform lithological character over a large area, then the proposition is reduced to its simplest form; but when, as in the deposit between the London clay and the chalk, the strata consist of variable mineral ingredients, it becomes essential to estimate the extent of these variations; for very different conclusions might be drawn from an inspection of the Lower Tertiary strata at different localities.

3

In the fine section exposed in the cliffs between Herne Bay and the Reculvers, in England, a considerable mass of fossili

ferous sands is seen to rise from beneath the London clay. Fig. 5 represents a view of a portion of this cliff a mile and a half east of Herne Bay and continued downwards, by estimation below the surface of the ground to the chalk. In this section there is evidently a very large proportion of sand, and consequently a large capacity for water. Again, at Upnor, near Rochester, the sands marked 3 are as much

In

as 60 to 80 feet thick, and continue so to Gravesend, Purfleet, and Erith. the first of these places they may be seen capping Windmill Hill; in the second, forming the hill, now removed, on which the lighthouse is built; and in the third, in the large ballast pits on the banks of the river Thames. The average thickness of these sands in this district may be about 50 to 60 feet. In their range from east to west, the beds 2 become more clayey and less permeable, and 1, very thin. As we approach London the thickness of 3 also diminishes. In the ballast pits at the west end of Woolwich, this sand bed is not more than 35 feet thick, and as it passes under London becomes still thinner.

[graphic]

Fig. 6.

Fig. 6 is a general or average section of the strata' on which London stands. The increase in the pro

portion of the argillaceous strata, and the decrease of the beds of sand, in the Lower Tertiary strata is here very apparent, and from this point westward to Hungerford, clays decidedly predominate; while at the same time the series presents such rapid variations, even on the same level and at short distances, that no two sections are alike. On the southern boundary of the Tertiary district, from Croydon to Leatherhead, the sands 3 maintain a thickness of 20 to 40 feet, whilst the associated beds of clay are of inferior importance. We will take another

Fig. 7.

3

[graphic]
« PrécédentContinuer »