Exercises in Classical Ring TheoryThis useful book, which grew out of the author's lectures at Berkeley, presents some 400 exercises of varying degrees of difficulty in classical ring theory, together with complete solutions, background information, historical commentary, bibliographic details, and indications of possible improvements or generalizations. The book should be especially helpful to graduate students as a model of the problem-solving process and an illustration of the applications of different theorems in ring theory. The author also discusses "the folklore of the subject: the `tricks of the trade' in ring theory, which are well known to the experts in the field but may not be familiar to others, and for which there is usually no good reference". The problems are from the following areas: the Wedderburn-Artin theory of semisimple rings, the Jacobson radical, representation theory of groups and algebras, (semi)prime rings, (semi)primitive rings, division rings, ordered rings, (semi)local rings, the theory of idempotents, and (semi)perfect rings. Problems in the areas of module theory, category theory, and rings of quotients are not included, since they will appear in a later book. T. W. Hungerford, Mathematical Reviews |
À l'intérieur du livre
Résultats 1-5 sur 98
Page
The four hundred problems in the first edition of this book were largely based on the original collection of exercises in my Springer Graduate Text A First Course in Noncommutative Rings, ca. 1991. A second edition of this ring theory ...
The four hundred problems in the first edition of this book were largely based on the original collection of exercises in my Springer Graduate Text A First Course in Noncommutative Rings, ca. 1991. A second edition of this ring theory ...
Page
49 38 Exercises §5. Jacobson Radical Under Change of Rings . . . . . . . . . . . . . . . . . 74 15 Exercises §6. Group Rings and the J-Semisimplicity Problem . . . . . . . . . . . . 82 21 Exercises 3 Introduction to Representation ...
49 38 Exercises §5. Jacobson Radical Under Change of Rings . . . . . . . . . . . . . . . . . 74 15 Exercises §6. Group Rings and the J-Semisimplicity Problem . . . . . . . . . . . . 82 21 Exercises 3 Introduction to Representation ...
Page
141 32 Exercises §11. Structure of Primitive Rings; the Density Theorem . . . . . . . . 161 24 Exercises §12. Subdirect Products and Commutativity Theorems . . . . . . . . 178 32 Exercises Introduction to Division Rings.
141 32 Exercises §11. Structure of Primitive Rings; the Density Theorem . . . . . . . . 161 24 Exercises §12. Subdirect Products and Commutativity Theorems . . . . . . . . 178 32 Exercises Introduction to Division Rings.
Page
The four hundred and eighty-five (485) exercises in the eight chapters of this book are organized into twenty-five consecutively numbered sections. As we have explained in the Preface, many of these exercises are chosen from the ...
The four hundred and eighty-five (485) exercises in the eight chapters of this book are organized into twenty-five consecutively numbered sections. As we have explained in the Preface, many of these exercises are chosen from the ...
Page 1
The exercises in this beginning section cover the basic aspects of rings, ideals (both 1-sided and 2-sided), zero-divisors and units, isomorphisms of modules and rings, the chain conditions, and Dedekind-finiteness.
The exercises in this beginning section cover the basic aspects of rings, ideals (both 1-sided and 2-sided), zero-divisors and units, isomorphisms of modules and rings, the chain conditions, and Dedekind-finiteness.
Avis des internautes - Rédiger un commentaire
Aucun commentaire n'a été trouvé aux emplacements habituels.
Table des matières
Jacobson Radical Theory | 49 |
Introduction to Representation Theory | 99 |
Ordered Structures in Rings 247 | 246 |
Perfect and Semiperfect Rings 325 | 324 |
Name Index | 349 |
Autres éditions - Tout afficher
Expressions et termes fréquents
0-divisor 2-primal abelian algebra artinian ring assume automorphism commutative ring conjugate constructed contradiction cyclic Dedekind-finite defined direct product direct summand division ring domain element endomorphism equation Exercise exists fact field finite group finite-dimensional follows group G hence homomorphism hopfian idempotent identity implies indecomposable induction infinite integer inverse irreducible isomorphism J-semisimple Jacobson radical k-algebra kG-module left ideal left primitive Lemma Let G local ring Math maximal ideal maximal left ideal Mn(k Mn(R module multiplication Neumann regular ring nil ideal Nilº noetherian ring noncommutative nonzero polynomial prime ideal primitive rings proof prove R-module R/rad rad kG representation resp right ideal right R-module ring theory semilocal ring semiprime semisimple ring show that rad simple ring Solution stable range subdirect product subgroup submodule subring suffices to show surjective Theorem unit-regular von Neumann regular zero