Exercises in Classical Ring TheorySpringer Science & Business Media, 9 mai 2006 - 364 pages This useful book, which grew out of the author's lectures at Berkeley, presents some 400 exercises of varying degrees of difficulty in classical ring theory, together with complete solutions, background information, historical commentary, bibliographic details, and indications of possible improvements or generalizations. The book should be especially helpful to graduate students as a model of the problem-solving process and an illustration of the applications of different theorems in ring theory. The author also discusses "the folklore of the subject: the `tricks of the trade' in ring theory, which are well known to the experts in the field but may not be familiar to others, and for which there is usually no good reference". The problems are from the following areas: the Wedderburn-Artin theory of semisimple rings, the Jacobson radical, representation theory of groups and algebras, (semi)prime rings, (semi)primitive rings, division rings, ordered rings, (semi)local rings, the theory of idempotents, and (semi)perfect rings. Problems in the areas of module theory, category theory, and rings of quotients are not included, since they will appear in a later book. T. W. Hungerford, Mathematical Reviews |
À l'intérieur du livre
Résultats 1-5 sur 38
Page
... Noncommutative Rings, ca. 1991. A second edition of this ring theory text has since come out in 2001. Among the special features of this edition was the inclusion of a large number of newly designed exercises, many of which have not ...
... Noncommutative Rings, ca. 1991. A second edition of this ring theory text has since come out in 2001. Among the special features of this edition was the inclusion of a large number of newly designed exercises, many of which have not ...
Page
... Noncommutative Rings (Springer-Verlag GTM 131, hereafter referred to as “FC”), I taught ring theory in Berkeley again in the fall of 1993, using FC as text. Since the main theory is already fully developed in FC, I asked my students to ...
... Noncommutative Rings (Springer-Verlag GTM 131, hereafter referred to as “FC”), I taught ring theory in Berkeley again in the fall of 1993, using FC as text. Since the main theory is already fully developed in FC, I asked my students to ...
Page
... Noncommutative Rings, (2nd edition), hereafter referred to as FC. A cross-reference such as FC-(12.7) refers to the result (12.7) in FC. Exercise 12.7 will refer to the exercise so labeled in §12 in this book. In referring to an ...
... Noncommutative Rings, (2nd edition), hereafter referred to as FC. A cross-reference such as FC-(12.7) refers to the result (12.7) in FC. Exercise 12.7 will refer to the exercise so labeled in §12 in this book. In referring to an ...
Page 1
... noncommutative ring theory, and will be used freely in all later exercises. These include, for instance, the computation of the center of a matrix ring (Exercise 9), the computation of the endomorphism ring for n (identical) copies of a ...
... noncommutative ring theory, and will be used freely in all later exercises. These include, for instance, the computation of the center of a matrix ring (Exercise 9), the computation of the endomorphism ring for n (identical) copies of a ...
Page 5
... noncommutative ring without identity of order p2. (c) Show that there exists a noncommutative ring (with identity) of order p3. Solution. (a) If the additive order of 1 is p2, then R = Z· 1 is clearly commutative. If the additive order ...
... noncommutative ring without identity of order p2. (c) Show that there exists a noncommutative ring (with identity) of order p3. Solution. (a) If the additive order of 1 is p2, then R = Z· 1 is clearly commutative. If the additive order ...
Table des matières
Jacobson Radical Theory | 49 |
Introduction to Representation Theory | 99 |
Ordered Structures in Rings 247 | 246 |
Perfect and Semiperfect Rings 325 | 324 |
Name Index | 349 |
Autres éditions - Tout afficher
Expressions et termes fréquents
0-divisor 2-primal abelian algebra artinian ring assume automorphism commutative ring conjugate constructed contradiction cyclic Dedekind-finite defined direct product direct summand division ring domain element endomorphism equation Exercise exists fact field finite group finite-dimensional follows group G hence homomorphism hopfian idempotent identity implies indecomposable induction infinite integer inverse irreducible isomorphism J-semisimple Jacobson radical k-algebra kG-module left ideal left primitive Lemma Let G local ring Math maximal ideal maximal left ideal Mn(k Mn(R module multiplication Neumann regular ring nil ideal Nilº noetherian ring noncommutative nonzero polynomial prime ideal primitive rings proof prove R-module R/rad rad kG representation resp right ideal right R-module ring theory semilocal ring semiprime semisimple ring show that rad simple ring Solution stable range subdirect product subgroup submodule subring suffices to show surjective Theorem unit-regular von Neumann regular zero