Images de page
PDF
ePub

and likewise for a remuneration for his services. On account of the loss of office, Bentham's salary was continued; but during the discussion which arose regarding the statement of services which Sir Samuel had drawn up at the request of the Admiralty, although, on coming to the metal mills, Lord Melville said, "There Sir Samuel stands upon a rock,” it proved a slippery one; for under the pretext that it would be necessary to apply to parliament for so large a sum as a year's savings effected by the introduction of the metal mills, no remuneration was ever accorded to Bentham for any one of his services.

After the restoration of peace in 1814, Sir Samuel retired to France, for the economical education of his children. In 1827 he returned to England, where he remained until his death in 1831, at the age of seventy-four.-Papers and Practical Illustrations of Public Works of Recent Construction, &c. London, 1856.

MATTHEW BOULTON, F.R.S. L. and E. &c.

Born at Birmingham, Sept. 3, 1728. Died Aug. 17, 1809.

This skilful, energetic, and farseeing man, who, by his extended views and liberal spirit of enterprise, contributed so greatly towards the successful introduction of Watt's condensing steam-engine, commenced life at Birmingham as a maker of buttons and shoebuckles. Matthew Boulton received an ordinary education at a school at Deritend. He was, however, gifted with rare endowments, and of these he made the best use; with a thorough knowledge of business, great prudence, and admirable tact, he combined boldness of spirit, quickness of thought, and promptitude of action. At the death of his father, Boulton became possessed of considerable property, and desirous of extending his commercial operations, purchased, about the year 1762, a lease of Soho, near Handsworth, where he founded that establishment which has become renowned as the nursery of English mechanics. The hill from which this place derived its name was, at that time, a bleak and barren heath, at the bottom of which rippled a small stream. Boulton's instinctive mind saw the uses to which these waters might be turned. By collecting them into a pool, and pouring their united weight upon a water wheel, he became possessed of a motive-power sufficient to set in motion various machines, by whose agency were fabricated articles in gold, silver, and tortoise-shell, and plated and inlaid works of the greatest elegance and perfection. On the side of the hill, Boulton built extensive workshops, and dwellings capable

of holding many hundreds of workmen, and erected a mansion for himself surrounded by beautiful grounds, where he lived as a prince among his people, extending hospitality to all around. In 1767, Boulton, finding that the motive-power which he possessed was inadequate to the various purposes of his machinery, erected a steam-engine upon the original construction of Savery. This, however, in turn was found to be insufficient for the objects required, and Boulton then had the discernment to perceive that they might be very completely attained by the adoption of the various improvements lately made in the steam-engine by James Watt. In 1773 he entered into partnership with this great scientific inventor, and induced him to settle at Soho and superintend personally the erection of his new steam-engines. This bold but clear-sighted act of Boulton was destined to crown with honour a reputation, already rising, and built upon the firm foundation of uprightness and integrity. Had Watt searched all Europe," says Playfair, "he could not have found another man so calculated to introduce the machine to the public in a manner worthy of its reputation." Its sale as an article of commerce was entirely conducted by him, and the skilful and liberal way in which he performed this difficult task brought in time its own reward; yet as great a sum as 47,000l. had to be expended upon the steam-engine before any profit resulted to its owners. In process of time, however, wealth flowed into the hands of Boulton and Watt; and in the year 1800 Mr. Watt was enabled to retire from the firm possessed of a large competency, and leaving the exclusive privilege of the sale of the engine to Boulton. Boswell, who visited Soho in 1776, shortly after the manufacture of steam-engines had been commenced there, was greatly struck by the vastness and contrivance of the machinery. "I shall never forget," he says, "Mr. Boulton's expression to me when surveying the works: 'I sell here, sir, what all the world desires to have-Power.' He had," continues Boswell, "about 700 people at work; I contemplated him as an iron chieftain, and he seemed to be the father of his tribe."*

In 1785 Mr. Boulton was elected a Fellow of the Royal Society, and two or three years after this, turned his attention to the subject of coining, to the improvement of which art he devoted the last twenty years of his life. He erected extensive machinery for this purpose, and by uniting some processes originating in France with new kinds of presses, he was enabled to obtain great rapidity of action combined with the utmost perfection in the articles produced; so much so, that having been employed by the British Government to recoin the whole of the British specie, he rendered counterfeits nearly impossible by the economy and excellence of his work. In addition to this, Mr. Boulton planned and directed the arrangement of the machinery in the British Mint, and executed that for the

* Quarterly Review, October, 1858.

coining department. He also constructed the machinery for the great national mints of St. Petersburgh and Copenhagen; his son, to whom the establishment at Soho devolved upon his death, doing the same for the extensive and splendid establishments of the East India Company at Bombay and Calcutta.

Boulton died August 17, 1809, in his eighty-first year, and his remains were borne to the grave by the oldest workmen connected with the works at Soho; five hundred persons belonging to that establishment joined in the procession, which numbered among its ranks several thousand individuals, to whom medals were given recording the age of the deceased and the date of his death.Stuart's Anecdotes of the Steam Engine. London, 1829.—Muirhead's Translation of Arago's Life of J. Watt. London, 1839.

JOSEPH BRAMAH.

Born April 13, 1749. Died December 9, 1814.

This eminent practical engineer and machinist was born at Stainborough, in Yorkshire. His father rented a farm on the estate of Lord Strafford, and Joseph, being the eldest of five children was intended for the same employment; but fortunately for his subsequent career, an accidental lameness, which occurred when he was sixteen years old, prevented his following agricultural pursuits. When quite a boy, Bramah exhibited unusual mechanical talent; he succeeded in constructing two violoncellos, which were found to be very tolerable instruments, and also managed to cut a violin out of a single block of wood, by means of tools which were forged for him by a neighbouring smith, whom in after life he engaged in London as one of his principal workmen. After having served an apprenticeship to a carpenter and joiner, Bramah obtained employment in the workshop of a cabinetmaker in London, and soon afterwards established himself as a principal in the business. The history of his life after this is perhaps best given by a record of his numerous inventions, all of which are, more or less, of a highly useful character. For the manufacture of these, Bramah first took up his residence in Denmark Street, Soho, but subsequently removed to Piccadilly, and established the various branches of his manufactory in some extensive premises at Pimlico. In 1783 he took out a patent for an improved watercock, and in the year following, completed the invention of his famous lock, which for many years stood unrivalled in ingenuity of construction, workmanship, and powers of resistance

against all attempts to pick.* Bramah's indefatigable spirit of invention was stimulated to fresh efforts by the success of his lock, and he now entered upon a more important and original line of action than he had yet ventured upon. In his patent of 1785 he indicated many inventions, although none of them came into practical use such as a Hydrostatical Machine and Boiler, and the application of the power produced by them to the drawing of carriages and the propelling of ships, by a paddle-wheel fixed in the stern of the vessel. For different modifications of pumps and fire-engines, Mr. Bramah took out three successive patents, the two last being dated in 1790 and 1798. But in the year 1795 he produced and patented the most important of all his inventions, namely, 'The Hydraulic Press,' a machine which gives to a child the strength of a giant, enabling him to bend a bar of iron as if it were wax. The chief difficulty which Bramah experienced in constructing this press was that of devising an efficient packing for the ram or solid piston, which, while capable of keeping out the water under the tremendous internal pressure exercised by the pump, should, on the withdrawal of that pressure, allow the ram to sink into its original place. This was at length accomplished by the invention of the self-tightening leather-collar, which was firmly secured in a recess at the top of a cylinder, with the concave side downwards. Consequently, when the water was pumped into the cylinder, it immediately forced its way between the bent edges of the collar; and the greater the pressure of water, the tighter became the hold which the collar took of the solid piston. It appears from the testimony of Mr. James Nasmyth, that Bramah was indebted for this simple but beautiful contrivance, to Henry Maudslay, who was at that time a workman in his shop, and who had already greatly assisted him in the construction of his lock.

Bramah continued his useful labours as an inventor for many years, and his studies of the principles of Hydraulics, in the course of his invention of the press, enabled him to introduce many valuable improvements in pumping machinery. By varying the form of the piston and cylinder, he was enabled to obtain a rotary motion, which he adopted in the well-known fire-engine. In 1797 he took out a patent for the beer-machine, now in such general use in public houses, and in the description of this he includes a mode of converting every cask in a cellar into a force pump, so as to raise the liquor to any part of the house; a filtering machine; a method of making pipes; a vent peg, and a new form of stop-cock. Bramah also turned his attention to the improvement of the steam-engine, but in this, Watt's patent had left little room for other inventors: and hence Bramah seems to have entertained a grudge against Watt, which was shown strongly in the evidence given by him in the case

*For Maudslay's connection with this lock, see Maudslay.

[ocr errors]

of Boulton and Watt versus Hornblower and Maberly, tried in December 1796. On the expiry, however, of Boulton and Watt's patent, Bramah introduced several valuable improvements in the details of the condensing engine, the most important of which was his "four-way cock," which was so contrived as to revolve continuously instead of alternately, thus insuring greater precision with less wear of parts. In this patent, which he secured in 1801, he also proposed sundry improvements in the boilers, as well as modifications in various parts of the engine. In the year 1802, Bramah obtained a patent for a very elaborate and accurate machine for producing smooth and parallel surfaces on wood and other materials. This was erected on a large scale at Woolwich Arsenal, and proved perfectly successful. The specification of the patent includes the description of a mode of turning spherical surfaces either convex or concave, by a tool moveable on an axis perpendicular to that of the lathe, and of cutting out concentric shells, by fixing in a similar manner a curved tool, nearly of the same form as that employed by common turners for making bowls. Bramah also invented machinery for making paper in large sheets, and for printing by means of a roller, composed of a number of circular plates, each turning on the same axis, and bearing twenty-six letters capable of being shifted at pleasure, so as to express any single line by a proper combination of the plates. This was put in practice to number bank-notes, and enabled twenty clerks to perform the labour which previously had required one hundred and twenty. In 1812 he projected a scheme for main-pipes, which was, however, in many respects, more ingenious than practicable. In describing this, he mentions having employed a hydrostatic pressure equal to that of a column of water twenty thousand feet high (about three and a half tons per square inch). Mr. Bramah made several improvements in the bearings of wheels, and suggested the use of pneumatic springs formed by pistons sliding in cylinders, in place of the usual metal springs for carriages. He likewise improved the machines for sawing stones and timber, and suggested some alterations in the construction of bridges and canal locks. He died in his sixty-sixth year, his last illness having been occasioned by a severe cold caught during the month of November, while making some experiments with his hydraulic press on the tearing up of trees in Holt Forest. He was a cheerful, benevolent, and affectionate man, neat and methodical in his habits, and knew well how to temper liberality with economy; greatly to his honour he often kept his workmen employed solely for their sake, when the stagnation of trade prevented him from disposing of the products of their labour. As a manufacturer he was distinguished for his promptitude and probity, and was celebrated for the exquisite finish which he gave to his productions. At his death he left his family in affluent circumstances, and his manufacturing establishments have since his death been continued by his sons. Unfortunately, Mr.

« PrécédentContinuer »