Quantum Field Theory I: Basics in Mathematics and Physics: A Bridge between Mathematicians and Physicists

Couverture
Springer Science & Business Media, 18 avr. 2007 - 1052 pages
1 Daß ich erkenne, was die Welt im Innersten zusammenh ̈ alt. Faust Concepts without intuition are empty, intuition without concepts is blind. Immanuel Kant (1724–1804) The greatest mathematicians like Archimedes, Newton, and Gauss have always been able to combine theory and applications into one. Felix Klein (1849–1925) The present comprehensive introduction to the mathematical and physical aspects of quantum ?eld theory consists of the following six volumes: Volume I: Basics in Mathematics and Physics Volume II: Quantum Electrodynamics Volume III: Gauge Theory Volume IV: Quantum Mathematics Volume V: The Physics of the Standard Model Volume VI: Quantum Gravity and String Theory. Since ancient times, both physicists and mathematicians have tried to und- stand the forces acting in nature. Nowadays we know that there exist four fundamental forces in nature: • Newton’s gravitational force, • Maxwell’s electromagnetic force, • the strong force between elementary particles, and • the weak force between elementary particles (e.g., the force responsible for the radioactive decay of atoms). In the 20th century, physicists established two basic models, namely, • the Standard Model in cosmology based on Einstein’s theory of general relativity, and • the Standard Model in elementary particle physics based on gauge theory. 1 So that I may perceive whatever holds the world together in its inmost folds.
 

Avis des internautes - Rédiger un commentaire

Aucun commentaire n'a été trouvé aux emplacements habituels.

Table des matières

I
1
II
21
III
22
IV
27
V
30
VI
46
VII
52
VIII
57
CCXVII
527
CCXVIII
529
CCXIX
531
CCXX
532
CCXXI
533
CCXXII
534
CCXXIV
535
CCXXV
537

IX
60
X
67
XI
69
XII
71
XIII
72
XIV
73
XVI
74
XVII
75
XIX
78
XX
81
XXI
82
XXII
83
XXIV
84
XXV
86
XXVI
87
XXVII
88
XXVIII
91
XXIX
96
XXX
99
XXXI
103
XXXII
108
XXXIII
111
XXXIV
113
XXXV
114
XXXVI
115
XXXVII
117
XXXVIII
122
XXXIX
126
XL
128
XLI
129
XLIII
132
XLIV
142
XLV
145
XLVI
156
XLVII
164
XLVIII
170
XLIX
172
L
176
LI
178
LIII
179
LIV
180
LVI
181
LVIII
182
LIX
184
LX
185
LXII
186
LXIII
188
LXV
191
LXVI
193
LXVII
195
LXVIII
203
LXIX
206
LXX
207
LXXII
208
LXXIII
209
LXXIV
211
LXXV
212
LXXVI
214
LXXVIII
215
LXXIX
216
LXXX
217
LXXXI
219
LXXXII
220
LXXXIII
221
LXXXIV
225
LXXXV
226
LXXXVI
227
LXXXVII
228
LXXXIX
230
XC
232
XCI
236
XCII
237
XCIII
243
XCV
244
XCVI
246
XCVII
247
XCVIII
248
XCIX
252
C
253
CI
255
CII
259
CIII
264
CIV
267
CVI
270
CVII
273
CVIII
276
CIX
277
CX
279
CXI
281
CXII
285
CXIII
287
CXIV
291
CXV
293
CXVII
298
CXIX
301
CXX
307
CXXII
311
CXXIII
314
CXXIV
319
CXXV
326
CXXVI
328
CXXVII
330
CXXVIII
337
CXXIX
342
CXXX
344
CXXXI
347
CXXXII
349
CXXXIII
351
CXXXIV
352
CXXXV
356
CXXXVI
357
CXXXVII
361
CXXXVIII
365
CXXXIX
368
CXL
370
CXLI
372
CXLII
374
CXLIII
375
CXLIV
379
CXLV
383
CXLVI
385
CXLVII
387
CXLVIII
388
CXLIX
390
CL
392
CLI
394
CLIII
395
CLIV
396
CLV
397
CLVI
398
CLVII
404
CLVIII
411
CLIX
418
CLXI
419
CLXII
424
CLXIII
425
CLXIV
426
CLXV
427
CLXVI
429
CLXVII
430
CLXIX
436
CLXXI
437
CLXXIII
440
CLXXIV
441
CLXXV
443
CLXXVI
447
CLXXVII
448
CLXXVIII
449
CLXXIX
450
CLXXX
451
CLXXXI
455
CLXXXII
458
CLXXXIV
459
CLXXXV
461
CLXXXVI
463
CLXXXVII
481
CLXXXVIII
486
CLXXXIX
490
CXC
495
CXCI
499
CXCIV
501
CXCV
504
CXCVI
505
CXCVII
508
CXCVIII
509
CXCIX
510
CC
511
CCI
512
CCIII
513
CCIV
515
CCV
517
CCVII
518
CCIX
519
CCX
520
CCXI
521
CCXIII
523
CCXVI
526
CCXXVI
542
CCXXVII
544
CCXXVIII
546
CCXXIX
549
CCXXX
551
CCXXXI
554
CCXXXII
557
CCXXXIII
560
CCXXXIV
562
CCXXXV
566
CCXXXVI
569
CCXXXVII
571
CCXXXVIII
576
CCXXXIX
581
CCXL
582
CCXLI
583
CCXLII
589
CCXLIII
591
CCXLV
592
CCXLVI
593
CCXLVII
594
CCXLIX
598
CCL
599
CCLI
609
CCLII
610
CCLIII
611
CCLIV
617
CCLV
620
CCLVI
621
CCLVIII
622
CCLIX
623
CCLX
625
CCLXI
628
CCLXIV
632
CCLXV
633
CCLXVI
635
CCLXVII
636
CCLXVIII
637
CCLXX
639
CCLXXI
641
CCLXXII
643
CCLXXIII
647
CCLXXIV
649
CCLXXVI
650
CCLXXVII
654
CCLXXIX
657
CCLXXX
658
CCLXXXI
660
CCLXXXII
661
CCLXXXIII
663
CCLXXXIV
665
CCLXXXV
666
CCLXXXVI
667
CCLXXXVII
668
CCLXXXVIII
669
CCLXXXIX
671
CCXC
672
CCXCI
675
CCXCIII
677
CCXCV
679
CCXCVI
680
CCXCVII
681
CCXCIX
683
CCCI
684
CCCIII
685
CCCIV
687
CCCV
691
CCCVI
692
CCCVIII
694
CCCX
695
CCCXI
697
CCCXII
705
CCCXIV
707
CCCXV
708
CCCXVI
717
CCCXVII
720
CCCXVIII
726
CCCXIX
730
CCCXX
731
CCCXXI
732
CCCXXIII
734
CCCXXIV
741
CCCXXV
748
CCCXXVI
749
CCCXXVII
750
CCCXXVIII
751
CCCXXIX
754
CCCXXXI
755
CCCXXXII
756
CCCXXXIII
757
CCCXXXV
758
CCCXXXVI
759
CCCXXXVIII
762
CCCXXXIX
763
CCCXL
765
CCCXLI
767
CCCXLII
772
CCCXLIII
775
CCCXLIV
776
CCCXLVI
784
CCCXLVIII
787
CCCXLIX
789
CCCLI
790
CCCLII
791
CCCLIII
793
CCCLIV
795
CCCLV
796
CCCLVI
800
CCCLVII
801
CCCLVIII
802
CCCLIX
803
CCCLX
805
CCCLXI
806
CCCLXII
814
CCCLXIII
816
CCCLXIV
817
CCCLXV
819
CCCLXVI
822
CCCLXVII
824
CCCLXVIII
826
CCCLXIX
831
CCCLXX
839
CCCLXXI
841
CCCLXXII
845
CCCLXXIII
847
CCCLXXIV
848
CCCLXXV
849
CCCLXXVI
850
CCCLXXVII
852
CCCLXXIX
855
CCCLXXX
856
CCCLXXXI
860
CCCLXXXII
861
CCCLXXXIII
862
CCCLXXXIV
863
CCCLXXXV
864
CCCLXXXVI
868
CCCLXXXVII
872
CCCLXXXVIII
874
CCCLXXXIX
879
CCCXCI
880
CCCXCII
886
CCCXCIII
888
CCCXCV
890
CCCXCVI
892
CCCXCVII
893
CCCXCVIII
895
CCCXCIX
896
CD
898
CDI
901
CDII
902
CDIII
905
CDIV
906
CDV
908
CDVII
916
CDVIII
918
CDIX
920
CDX
921
CDXI
924
CDXII
935
CDXIII
940
CDXIV
941
CDXV
942
CDXVI
943
CDXVII
944
CDXVIII
947
CDXX
950
CDXXI
952
CDXXII
958
CDXXIII
960
CDXXIV
962
CDXXV
971
CDXXVI
975
CDXXVII
1020
CDXXVIII
1025
Droits d'auteur

Autres éditions - Tout afficher

Expressions et termes fréquents

À propos de l'auteur (2007)

Prof. Dr. Dr. h.c. Eberhard Zeidler works at the Max Planck Institute for Mathematics in the Sciences in Leipzig (Germany). In 1996 he was one of the founding directors of this institute. He is a member of the Academy of Natural Scientists Leopoldina. In 2006 he was awarded the "Alfried Krupp Wissenschaftspreis" of the Alfried Krupp von Bohlen und Halbach-Stiftung.

The author wrote the following books.

(a) E. Zeidler, Nonlinear Functional Analysis and its Applications, Vols. I-IV,
Springer Verlag New York, 1984-1988 (third edition 1998).

(b) E. Zeidler, Applied Functional Analysis, Vol. 1:
Applications to Mathematical Physics, 2nd edition, 1997, Springer Verlag, New York.

(c) E. Zeidler, Applied Functional Analysis, Vol. 2:
Main Principles and Their Applications,
Springer-Verlag, New York, 1995.

(d) E. Zeidler, Oxford Users' Guide to Mathematics, Oxford University Press, 2004
(translated from German).

Informations bibliographiques