Quadrature arithmétique du cercle, de l'ellipse et de l'hyperbole et la trigonométrie sans tables trigonométriques qui en est le corollaire

Couverture
En 1676, alors qu'il sejourne encore a Paris, Leibniz entreprend de composer un volumineux traite qui restera sans doute l'un de ses ecrits mathematiques les plus fortement charpentes: La quadrature arithmetique du cercle, de l'ellipse et de l'hyperbole et la trigonometrie sans tables qui en est le corollaire. Ce traite se presente comme un abrege exhaustif de la geometrie infinitesimale, dont Leibniz avait pu esperer qu'elle lui ouvrirait les portes de l'Academie des Sciences. Cependant, contraint de quitter la capitale avant sa publication, il abandonnera derriere lui un ouvrage qui n'allait voir le jour qu'en 1993. Le probleme de la quadrature est pretexte a soulever plusieurs enjeux capitaux tant pour les mathematiques que pour la philosophie. Il permet notamment a Leibniz d'examiner avec une grande precision la question de la methode, des fondements, ainsi que des notions cruciales de rigueur et d'infini, tout en mettant en evidence leurs applications pratiques. Si la presente edition de ce texte foisonnant ne reproduit pas l'integralite des variantes, elle en propose une version corrigee et annotee, qui s'accompagne d'une traduction francaise en regard.
 

Avis des internautes - Rédiger un commentaire

Aucun commentaire n'a été trouvé aux emplacements habituels.

Table des matières

Les signes ambigus
9
La géométrie transcendante
16
Inversion
22
Le langage des indivisibles
28
Index des points remarquables
35
TABLE DES MATIÈRES Proposition II 39
63
Proposition VIII
85
Proposition IX
89
Proposition XXVII
199
Proposition XXVIII
201
Proposition XXIX
207
Proposition XXX
213
Proposition XXXI
215
Proposition XXXII
219
Proposition XXXIII
221
Proposition XXXIV
223

Proposition X
91
Proposition XI
93
Proposition XII
103
Proposition XIII
107
Proposition XIV
109
Proposition XV
141
Proposition XVI
149
Proposition XVII
155
Proposition XIX
159
Proposition XX
165
Proposition XXI
167
Proposition XXII
171
Proposition XXIII
179
Proposition XXIV
187
Proposition XXV
189
Proposition XXVI
195
Proposition XXXVI
227
Proposition XXXVIII
229
Proposition XL
231
Proposition XLI
239
Proposition XLII
241
Proposition XLIII
251
Proposition XLIV
283
Proposition XLV
287
Proposition XLVI
289
Proposition XLVII
301
Proposition XLVIII
311
Proposition XLIX
323
Proposition L
325
Proposition LI
355
BIBLIOGRAPHIE
361
Droits d'auteur

Expressions et termes fréquents

Références à ce livre

Euler as Physicist
Dieter Suisky
Aperçu limité - 2008

À propos de l'auteur (2004)

Gottfried Wilhelm Leibniz, one of the last real polymaths, was born in Leipzig. Educated there and at the Universities at Jena and Altdorf, he then served as a diplomat for the Elector of Mainz and was sent to Paris, where he lived for a few years and came into contact with leading scientists, philosophers, and theologians. During a trip to England, he was elected to the Royal Society; he made a visit to Holland to meet Spinoza. Back in Germany he became librarian to the Duke of Brunswick, whose library was the largest in Europe outside the Vatican. From there he became involved in government affairs in Hanover and later settled in Berlin at the court of Queen Sophie Charlotte of Prussia. Leibniz was involved in the diplomatic negotiations that led to the Hanoverian succession to the English throne. From his university days he showed an interest in mathematics, logic, physics, law, linguistics, and history, as well as theology and practical political affairs. He discovered calculus independently of Newton and had a protracted squabble about which of them should be given credit for the achievement. The developer of much of what is now modern logic, he discovered some important physical laws and offered a physical theory that is close to some twentieth-century conceptions. Leibniz was interested in developing a universal language and tried to master the elements of all languages. Leibniz corresponded widely with scholars all over Europe and with some Jesuit missionaries in China. His philosophy was largely worked out in answer to those of other thinkers, such as Locke, Malebranche, Bayle, and Arnauld. Although he published comparatively little during his lifetime, Leibniz left an enormous mass of unpublished papers, drafts of works, and notes on topics of interest. His library, which has been preserved, contains annotations, analyses, and often refutations of works he read. The project of publishing all of his writings, undertaken in the 1920s by the Prussian Academy, was delayed by World War II but was resumed thereafter. It is not likely that the project will be completed in the twentieth century.

Informations bibliographiques