Images de page
PDF
ePub

became a simple process to ascertain pretty nearly the extent of subsidence in any bog to be passed through, and of course to lay out the line of the canal with such levels, that after subsidence, its surface should be at the required depth below the surface of the bog.

Amongst Mr. Chapman's other extensive employments in Ireland, he caused, at the instance of the Irish Government, a survey to be made of the harbour of Dublin to beyond the Bar at Howth; and on this occasion projected a pier from the Clontarf shore to a due distance from the lighthouse, and then to the westward to a proper distance from the north wall, so as to confine all the tidal water covering that vast space, and to cause it to pass down the channel of Pool Beg, in place of being permitted to flow inwards and outwards over the North Bull.

In the year 1794 Mr. Chapman returned from Ireland, and fixed his general residence at Newcastle-upon-Tyne. About this time the great project of a canal communication between the German Ocean and the Irish Sea, was engaging general attention in the North of England, and Mr. Chapman was fixed upon to survey the line of country for this proposed canal between Newcastle and the Solway Firth. His reports on this subject, which were made during the years 1795 and 1796, are still extant; and although the work to which they relate was never executed, the documents connected with it are of a very interesting nature. In 1808 this project, which had lain dormant for many years, was again revived, and Mr. Telford was employed to survey and report upon the best line of canal between Carlisle and a suitable port on the Solway Firth. Although Mr. Telford's plan was highly approved of, the time had not yet arrived for the carrying out of even this small portion of the original great scheme; and it was not until the year 1818, when Mr. Chapman drew up a plan and report upon this line from Carlisle to Bowness, that a Bill was brought into Parliament, for which an act was obtained early in 1819. The canal which has been in successful operation for many years, is eleven-and-a-half miles in length, and cost. about 120,000l. It commences on the south-eastern side of Carlisle, and falls into the sea, through a height of seventy feet, by means of nine locks.

About the year 1796 Mr. Chapman became a member of the Society of Civil Engineers, which at that time numbered amongst its members Watt, Jessop, and Rennie, and amongst its honorary associates Sir Joseph Banks, and other leading men of the day. In conjunction with Mr. Rennie, Chapman was then occupied in designing the London Docks, and subsequently the southern dock and basin at Hull. He was also engaged as engineer for the construction of Leith, Scarborough, and Seaham Harbours, the last named work being undertaken for the Marquis of Londonderry.

In addition to his regular professional occupations, Mr. Chapman devoted a portion of his time to the publication of works bearing on

engineering. Amongst the most important of these were the following: A Treatise on the various inventions for effecting ascents in rivers;' 'Hints on the necessity of Legislative interference for registering the extent of workings in the Coal Seams, and preventing such accidents as arise from want of that knowledge;' 'An Essay on Cordage;' and 'A Treatise on the preservation of Timber from premature decay.' Mr. Chapman also took out a patent for an improvement upon Captain Huddart's system of manufacturing ropes. This method was successfully carried into effect in all the rope grounds on the river Tyne, and in some of those on the Wear and Tweed. His next invention was for an expeditious and easily practicable method of lowering coal waggons, with their contents, immediately over the hatchways of ships, so as to prevent the great breakage of coals which attended the usual method of shooting them through long spouts; this system, after the expiration of the patent became universal upon the Tyne.

Mr. Chapman possessed a robust constitution, and practised through life the most temperate habits; he was thus enabled to retain the full enjoyment of his faculties, and to continue employed upon various public works, in drainages, canals, and harbours, up till within a very short period of his decease, which occurred in 1832, in the eightythird year of his age.—Life of Chapman. London, John Weale.

SIR WILLIAM CONGREVE, BART., F.R.S.

Born in Middlesex, May 20, 1772. Died May 3, 1828.

Sir William Congreve was the son of the first baronet, an Artillery officer of the same name. He entered early into the branch of military service his father had pursued, and, in 1816, attained in it the rank of Lieutenant-Colonel. He was also at this time equerry to the Prince Regent, which office he retained on the occasion of his quitting the military service in 1820. Congreve very early distinguished himself by his inventions in the construction of missiles. He invented the rocket which bears his name in the year 1808, and succeeded in establishing this destructive engine of warfare as a permanent instrument in military and naval tactics, both at home and abroad. It was used by Lord Cochrane in his attack on the French squadron in the Basque roads, in the expedition against Walcheren, at Waterloo, and with most serviceable effect in the attack on Algiers. It was also used at the battle of Leipzig in 1813, and for its service on this occasion the Order of St. Anne was conferred on Sir William by the Emperor of Russia. Since that time

the rocket has been much improved and modified, and has become an essential part of every armament, not in England alone, but universally.

Sir William Congreve was elected a Fellow of the Royal Society in the year 1811. In 1812 he became a Member of Parliament for Gatton, and in 1820 and 1826 for Plymouth. He succeeded his father as baronet in 1814. Besides the above important invention, Sir William wrote and published in 1812 an 'Elementary Treatise on the Mounting of Naval Ordnance,' and in 1815 ' A Description of the Hydro-Pneumatic Lock.' During the course of the same year he obtained a patent for a new. mode of manufacturing gunpowder. This invention consisted, first, of a machine for producing as perfect a mixture as possible of the ingredients; and, secondly, of an improved mode of passing the mill-cake under the press, and a new granulating machine. In 1819 a patent was granted to him for an improved mode of inlaying or combining different metals, and another for certain improvements in the manufacture of bank-note paper for the prevention of forgery.

The last public service performed by Sir William was the drawing up and publishing, in 1823, a very interesting report on the gaslight establishments of the metropolis. In 1826, he became mixed up in the speculative mania which prevailed at that period, and was ultimately compelled to seek refuge on the continent at Toulouse, where he shortly afterwards died at the age of fifty-six.-Annual Register, 1828.

SAMUEL CROMPTON.

Born December 3, 1753. Died June 26, 1827.

Few men, perhaps, have ever conferred so great a benefit on their country and reaped so little profit for themselves as Samuel Crompton, inventor of the Spinning Mule. He was born at Firwood, in the township of Tonge near Bolton, where his parents occupied a farm, and spent their leisure hours according to the custom of the period-in the operations of carding, spinning, and weaving. Soon after the birth of Samuel, the Cromptons removed to a cottage near Lower Wood in the same township, and afterwards, when their child was five years old, to a portion of the neighbouring ancient mansion called Hall-in-the-Wood. Almost immediately after this last removal Samuel's father died, at the early age of thirty seven, and he was left to be brought up under the care of his mother, a prudent and virtuous woman, who took care that her son should have the benefit of all available means of education. Samuel first

attended the school of Mr. Lever in Church Street, Bolton, but was very early removed to the school of William Barlow, a master well known at that time for his success as a teacher of writing, arithmetic, and the higher branches of mathematics.

From the exigencies of her situation, Mrs. Crompton was compelled to take advantage of her son's assistance, as soon as she possibly could, and there is little doubt that Samuel's legs must have been accustomed to the loom almost as soon as they were long enough to touch the treddles. Little, however, is known of his early life until the year 1769. He was then sixteen years old, and continued to reside with his mother, occupied during the day at the loom and spending his evenings at a school in Bolton, where he advanced his knowledge of algebra, mathematics, and trigonometry. For some years previous to this period there had been a greatly increased demand for all kinds of cotton goods, particularly for imitations of the fine muslins imported from India; and many attempts were made by the manufacturers in Lancashire and Scotland to produce similar fabrics, but without success, for the handspun yarn of this country could not compete with the delicate filaments produced by Hindoo fingers. Still, the demand for fine cottons of various kinds was so considerable, that the weavers, for the sake of high wages, were stimulated to make great exertions. But they were continually impeded by the scarcity of yarn for weft, which often kept them idle half their time, or compelled them to collect it in small quantities from the cottages round about.

Another important cause of this scarcity had been the invention of the fly-shuttle, by Kay of Bury, in 1738, which by doubling the speed of the weaver's operations, had destroyed the arrangement which, up to that time, existed between the quantity of yarn spun and the weavers' demand for it. This natural balance, the flyshuttle suddenly disturbed, and, notwithstanding the great efforts of others, it was not again adjusted until after Crompton's invention was in full operation. Such was the weavers' state of starvation for yarn, when, in 1767, Hargreaves invented the jenny, which enabled a number of threads to be spun at the same time.

It was on one of these machines with eight spindles, that Samuel Crompton was in the habit of spinning the yarn which he afterwards wove into quilting, and he continued thus occupied for the five following years. During this period, being debarred from company and accustomed to solitude, he began to show a taste for music; to gratify which he was led to the first trial of his mechanical skill in making a violin, upon which he commenced learning to play. With this musical friend Crompton would beguile many a long winter night, or during the summer evenings wander contemplatively among the green lanes, or by the margin of the pleasant brook that swept round the romantic old residence of Hall-in-the-Wood. He had, however, little leisure in general to spend with his favourite

instrument; the necessities of his situation compelled him to perform daily a certain amount of weaving, and he only succeeded in performing this at the expense of much time lost in mending the ever breaking ends of the yarn spun on Hargreave's machine, which was of a very soft nature, and quite unfitted for warps or for the muslins so much in demand.

During this same period Arkwright had risen to eminence, by adopting and carrying into practice the ideas of Highs,* and one Kay a clockmaker, and had constructed his water-frame, which by means of rollers produced thread of a very superior texture and firmness. It remained, however, for Crompton to combine in his machine the improvements of Hargreaves and Arkwright, and hence was derived the name given to it of the Spinning-Mule.

Crompton commenced the construction of this machine, which for many years was known by the name of the 'Hall-i'-th'-Wood Wheels, in the year 1774. His first spinning-mule was constructed chiefly in wood, by the aid of a scanty supply of tools which had been left by his father, who, enthusiastically fond of music, had shortly before his death commenced making an organ. With the help of these tools, and the assistance which a small wayside smithy afforded him, Samuel Crompton completed that invention which, from the extended benefits it has conferred upon our commerce, entitles him to rank amongst the greatest inventors Britain has ever produced. The important part of his invention was the spindle carriage, and the principle of there being no strain upon the thread until it was completed. This was accomplished by causing the carriage with the spindles to recede by the movement of the hand and knee, just as the rollers delivered out the elongated thread in a soft state, so that it would allow of a considerable stretch, before the thread had to encounter the stress of winding upon the spindle. "This," as the late Mr. Kennedy of Manchester truly said, "was the corner stone of his invention."

When Crompton was on the eve of completing his first mule, about the year 1779, the Blackburn spinners and weavers, who had previously driven Hargreaves from his home, again commenced their riotous proceedings, and began to destroy all the jennys round about, which had more than twenty spindles. Crompton, fearful lest his new machine should meet with a similar fate, took it to pieces and kept it hid in a loft above the ceiling of his room during several weeks. In the course of the same year, however, the Halli'-th'-Wood Wheel was completed, and the yarn spun on it proved fit for the manufacture of muslins of an extremely fine and delicate

texture.

* Highs or Hays was a reedmaker at Leigh, and in 1767 took up the plan of attempting to spin by rollers running at different speeds, previously invented by Lewis Paul in 1738. Highs employed Kay to carry out his plans, from whom Arkwright obtained the requisite information.

« PrécédentContinuer »