Handbook of the Normal Distribution, Second EditionCRC Press, 16 janv. 1996 - 456 pages "Traces the historical development of the normal law. Second Edition offers a comprehensive treatment of the bivariate normal distribution--presenting entirely new material on normal integrals, asymptotic normality, the asymptotic properties of order statistics, and point estimation and statistical intervals." |
Table des matières
A HISTORICAL BACKGROUND | 1 |
2 | 21 |
3 | 40 |
4 | 72 |
1 | 81 |
SAMPLING DISTRIBUTIONS | 113 |
LIMIT THEOREMS AND EXPANSIONS | 145 |
NORMAL APPROXIMATIONS TO DISTRIBUTIONS | 179 |
ORDER STATISTICS FROM NORMAL SAMPLES | 241 |
66 | 258 |
73 | 294 |
THE BIVARIATE NORMAL DISTRIBUTION | 295 |
81 | 318 |
BIVARIATE NORMAL SAMPLING DISTRIBUTIONS | 341 |
POINT ESTIMATION | 365 |
85 | 367 |
Autres éditions - Tout afficher
Handbook of the Normal Distribution, Second Edition Jagdish K. Patel,Campbell B. Read Aucun aperçu disponible - 1996 |
Expressions et termes fréquents
a₁ Abramowitz and Stegun absolute error accurate algorithm American Statistical Association Annals of Mathematical asymptotic normality B-content b₂ binomial Biometrika bivariate normal distribution bound central limit theorem characterization chi-square Communications in Statistics computing convergence correlation coefficient Cramér cumulants David decimal places defined degrees of freedom denote discussed expansion Fisher function gives Gn(x Harter independent rvs integral Johnson and Kotz Journal kurtosis Lehmann Let X1 linear Mathematical Statistics Molenaar moments mutually independent noncentral normal approximation obtained Odeh one-sided order statistics Owen parameter pdf g(y Pearson percent points percentiles polynomial prediction intervals quantiles random sample random variables sample mean sample variance standard deviation standard normal Stuart and Ord T₁ T₂ Tables tabulated Technometrics tolerance interval transformation truncated two-sided UMVU estimator values Wiley X₁ Y₁ York zero σ²