Images de page

first hand by the study of the actual books of their professors and by familiarity with their courses of study, have not been inclined to make the mistake of thinking that the medieval university neglected science. Professor Huxley in his " Inaugural Address as Rector of Aberdeen University" some thirty years ago stated very definitely his recognition of medieval devotion to science. His words are well worth remembering by all those who are accustomed to think of our time as the first in which the study of science was taken up seriously in our universities. Professor Huxley said:

The scholars of the medieval universities seem to have studied grammar, logic, and rhetoric; arithmetic and geometry; astronomy, theology, and music. Thus their work, however imperfect and faulty, judged by modern lights, it may have been, brought them face to face with all the leading aspects of the many-sided mind of man. For these studies did really contain, at any rate in embryo, sometimes it may be in caricature, what we now call philosophy, mathematical and physical science, and art. And I doubt if the curriculum of any modern university shows so clear and generous a comprehension of what is meant by culture, as this old Trivium and Quadrivium does.

It would be entirely a mistake, however, to think that these great writers and teachers who influenced the medieval universities so deeply and whose works were the text-books of the universities for centuries after, only had the principles of physical and experimental science and did not practically apply them. As a matter of fact their works are full of observation. Once more, the presumption that they wrote only nonsense with regard to science comes from those who do not know their writings at all, while great scientists who have taken the pains to study their works are enthusiastic in praise. Humboldt, for instance, says of Albertus Magnus, after reading some of his works with care:

Albertus Magnus is equally active and influential in promoting the study of natural science and of the Aristotelian philosophy. His works contain some exceedingly acute remarks on the organic structure and physiology of plants. One of his works bearing the title of "Liber Cosmographicus De Natura Locorum" is a species of physical geography. I have found in it considerations on the dependence of temperature concurrently on latitude and elevation and on the effect of different angles of the sun's rays in heating the ground which have excited my surprise.

It is with regard to physical geography of course that Humboldt is himself a distinguished authority.

Humboldt's expression that he found some exceedingly acute remarks on the organic structure and physiology of plants in Albert the Great's writings will prove a great surprise to many people. Meyer, the German historian of botany, however, has re-echoed Humboldt's praise with emphasis. The extraordinary erudition and originality of Albert's treatise on plants drew from Meyer the comment:

No botanist who lived before Albert can be compared with him unless Theophrastus, with whom he was not acquainted; and after him none has painted nature in such living colors or studied it so profoundly until the time of Conrad Gessner and Cresalpino.

These men, it may be remarked, come three centuries after Albert's time. A ready idea of Albert's contributions to physical science can be obtained from his life by Sighart, which has been translated into English by Dixon and was published in London in 1870. Pagel, in Puschmann's " History of Medicine," already referred to, gives a list of the books written by Albert on scientific matters with some comments which are eminently suggestive, and furnish solid basis for the remark that I have made, that men's minds were occupied with nearly the same problems in science in the thirteenth century as we are now, while the conclusions they came to were not very different from ours, though reached so long before us.

This catalogue of Albertus Magnus' works shows very well his own interest and that of his generation in physical science of all kinds. There were eight treatises on Aristotle's physics and on the underlying principles of natural philosophy and of energy and of movement; four treatises concerning the heavens and the earth, one on physical geography which also contains, according to Pagel, numerous suggestions on ethnography and physiology. There are two treatises on generation and corruption, six books on meteors, five books on minerals, three books on the soul, two boeks on the intellect, a treatise on nutritives, and then a treatise on the senses and another on the memory and on the imagination. All the phases of the biological sciences were especially favorite subjects of his study. There is a treatise on the motion of animals, a treatise in six books on vegetables and plants, a treatise on breathing things, a treatise on sleep and waking, a treatise on youth and old age, and a treatise on life and death. His treatise on minerals contains, according to Pagel, a description of ninety-five different kinds of precious stones. Albert's volumes on plants were reproduced with Meyer, the German botanist, as editor (Berlin, 1867). All of Albert's books are available in modern editions. Pagel says of Albertus that

His profound scholarship, his boundless industry, the almost incontrollable impulse of his mind after universality of knowledge, the many-sidedness of his literary productivity, and finally the almost universal recognition which he received from his contemporaries and succeeding generations, stamp him as one of the most imposing characters and one of the most wonderful phenomena of the Middle Ages.

In another passage Pagel has said:

While Albert was a Churchman and an ardent devotee of Aristotle, in matters of natural phenomena he was relatively unprejudiced and presented an open mind. He thought that he must follow Hippocrates and Galen, rather than Aristotle and Augustine, in medicine and in the natural sciences. We must concede it a special subject of praise for Albert that he distinguished very strictly between natural and supernatural phenomena. The former he considered as entirely the object of the investigation of nature. The latter he handed over to the realm of metaphysics.

Koger Bacon is, however, the one of these three great teachers who shows us how thoroughly practical was the scientific knowledge of the universities and how much it led to important useful discoveries in applied science and to anticipations of what is most novel even in our present-day sciences. Some of these indeed are so startling, that only that we know them not by tradition but from his works, where they may be readily found without any doubt of their authenticity, we should be sure to think that they must be the result of later commentators' ideas. Bacon was very much interested in astronomy, and not only suggested the correction of the calendar, but also a method by which it could be kept from wandering away from the actual date thereafter. He discovered many of the properties of lenses and is said to have invented spectacles and announced very emphatically that light did not travel instantaneously but moved with a definite velocity. He is sometimes said to have invented gunpowder, but of course he did not, though he studied this substance in various forms very carefully and drew a number of conclusions in his observations. He was sure that some time or other man would learn to control the energies exhibited by explosives and that then he would be able to accomplish many things that seemed quite impossible under present conditions.

He said, for instance:

Art can construct instruments of navigation, such that the largest vessels governed by a single man will traverse rivers and seas more rapidly than if they were filled with oarsmen. One may also make carriages which without the aid of any animal will run with remarkable swiftness.

In these days when the automobile is with us and when the principal source of energy for motor purposes is derived from explosives of various kinds, this expression of Boger Bacon represents a prophecy marvellously surprising in its fulfilment. It is no wonder that the book whence it comes bears the title "De Secretis Artis et Naturae." Roger Bacon even went to the extent, however, of declaring that man would some time be able to fly. He was even sure that with sufficient pains he could himself construct a flying machine. He did not expect to use explosives for his motor power, however, but thought that a windlass properly arranged, worked by hand, might enable a man to make sufficient movement to carry himself aloft or at least to support himself in the air, if there were enough surface to enable him to use his lifting power to advantage. He was in intimate relations by letter with many other distinguished inventors and investigators besides Peregrinus and was a source of incentive and encouragement to them all.

The more one knows of Aquinas the more surprise there is at his anticipation of many modern scientific ideas. At the conclusion of a course on cosmology delivered at the University of Paris he said that "nothing at all would ever be reduced to nothingness " (nihil omnino in nihilum redigetur). He was teaching the doctrine that man could not destroy matter and God would not annihilate it. In other words, he was teaching the indestructibility of matter even more emphatically than we do. He saw the many changes that take place in material substances around us, but he taught that these were only changes of form and not substantial changes and that the same amount of matter always remained in the world. At the same time he was teaching that the forms in matter by which he meant the combinations of energies which distinguish the various kinds of matter are not destroyed. In other words, he was anticipating not vaguely, but very clearly and definitely, the conservation of energy. His teaching with regard to the composition of matter was very

« PrécédentContinuer »